Nease Chemical Site Proposed Cleanup Plan Sediment and Floodplain Soil

Mary Logan & Susan Pastor U.S. EPA, Region 5
July 31, 2008

EPA's Proposed Cleanup Plan

- Addresses three components:
 - Feeder Creek sediment
 - Middle Fork of Little Beaver Creek (MFLBC) floodplain soil
 - MFLBC sediment
- Disposal of soil and sediment at the plant site under a clean soil cover
- Monitoring → before, during and after

Alternative C EPA's Recommended Alternative

- Feeder Creek remove all sediment
 - By dry excavation
- Floodplain soil targeted removal
 - By excavation
 - To meet cleanup goal
- MFLBC sediment targeted removal
 - By dredging or dry excavation
 - To meet cleanup goal
- Cost \$3.8 million

Targeted Remediation Areas

LEGEND

 Indicates river mile designation

xxx - approximate floodplain areas for targeted soil removal

NEASE FACILITY

Alternative A

- EPA Is required to consider a "no action" or "no further action" option
- Feeder Creek no further action, but existing sediment traps would remain
- Floodplain soil no action
- MFLBC sediment no action
- **Cost** − \$360,000

Alternative B

- Feeder Creek remove all sediment
 - By dry excavation
- Floodplain soil targeted removal
 - By excavation
 - To meet cleanup goal
- MFLBC sediment monitored natural recovery
- Cost \$2.2 million

Nease Chemical Plant

- Nease facility is west of MFLBC
- Feeder Creek drains the plant
- Mirex was carried into MFLBC
 - About 40 river miles investigated
 - Sediment, fish and soil tested
 - Highest levels are within 6 ½ miles of the plant

Sediment Results - MFLBC

Floodplain Soil Results - MFLBC, 2006

How Contamination Moved

Potential Risks

- Mirex is the main contaminant
 - It was banned in the U.S. in 1978
 - It breaks down very slowly and can build up in the food chain
 - It can cause adverse human health or ecological effects
- Currently people are not at risk
- In the future, people could be at risk from eating contaminated fish, milk or beef
- Small animals could be at risk

Removal Methods: Dry Excavation

Removal Methods: Dredging

Floodplain Soil Excavation

Soil and Sediment Handling

How Does EPA Compare Options? EPA's Nine Criteria

- 1. Overall protection of human health and the environment
- 2. Compliance with ARARs
- 3. Long-term effectiveness and permanence
- 4. Reduction of toxicity, mobility or volume through treatment
- 5. Short-term effectiveness
- 6. Implementability
- 7. Cost
- 8. State acceptance
- 9. Community acceptance

Why Alternative C?

- Offers best long-term cleanup solution
- Provides best protection for people and the environment
- Removes highly contaminated soil and sediment from MFLBC
- Removes Feeder Creek as a source
- Balances removal and habitat protection
- Meets cleanup goals most quickly

Next Steps

- EPA selects the final cleanup in a Record of Decision
 - Will consider all comments
- Sign legal agreement to do cleanup
- Pre-design investigations
- Design of the cleanup
- Construction of the remedy

Plant Soil and Groundwater Cleanup Update

Remedy for Plant Soil and Groundwater

- Ponds 1 & 2 treated inplace by air stripping and stabilization/solidification
- Other ponds and soil covered by clean material
- Shallow groundwater collected in a trench, pumped above ground, treated
- Deep groundwater treated underground by nanoscale zero-valent iron

Stripping/Stabilization/Solidification

- Laboratory tests completed in 2007
 - Air stripping removed a large amount of contamination
 - Treatment with cement and fly ash immobilized the remaining contaminants

Nanoscale Zero-valent Iron (NZVI)

- Microscopic iron particles
 - Contaminants are destroyed by a reaction similar to rusting
- Field pilot tests completed in 2007
 - Good destruction of some contaminants
 - Biotreatment as an enhancement

Questions?